Quality Engineering and Management

technology.siu.edu
deptoftech@engr.siu.edu

COLLEGE OF ENGINEERING

Graduate Faculty:

Chang, Feng-Chang (Roger), Associate Professor, Emeritus
Ph.D., Ohio State University, 1985; 1991.
Crosby, Garth, Associate Professor, Ph.D., Florida International University, 2007, 2008.
DeRuntz, Bruce, Professor, Ph.D., Southern Illinois University Carbondale, 2005; 1998.
Dunston, Julie K., Associate Professor and Chair, Ph.D., Florida State University, 1995; 1995.
Marusarz, Ronald K., Associate Professor, Emeritus, Ph.D., Southern Illinois University Carbondale, 1999.
Savage, Mandara, Associate Professor, Ph.D., Iowa State University, 1999; 1999.
Spezia, Carl J., Associate Professor, Ph.D., Southern Illinois University Carbondale, 2002; 2005.
Velasco, Tomas, Associate Professor, Ph.D., University of Arkansas, 1991; 1993.

Master of Science in Quality Engineering and Management

Graduate work leading to a Master of Science degree in quality engineering and management is offered by the College of Engineering. The objective of the program is to develop quality and management professionals who can plan, coordinate, design, implement, and control the quality function in manufacturing and service companies in order to increase productivity, optimize resources, decrease waste, and improve product quality. Course offerings and research are available in the areas of quality assurance, six sigma, lean manufacturing, project management and reliability. The program provides advanced education for students with baccalaureate degrees in engineering, engineering technology, technology, and also an excellent continuing education opportunity for individuals with technical degrees who wish to expand their education in the area of quality and management systems.

Accelerated Masters

Industrial Management and Applied Engineering (IMAE) students with senior standing and a GPA of 3.5 will be permitted to take up to nine hours of graduate credit in Fall and Spring semesters. By doing so, students then pursuing their Master’s degree in Quality Engineering and Management (QEM) after completing their Bachelor’s degree in IMAE will have these graduate credits transferred to the QEM degree. This will allow the student to complete the degree requirements in about a year. Students must complete a Graduate School application and work with the graduate advisor on a program of study. Nine credit hours will be allowed to double count toward the undergraduate degree and the Master’s degree. The accelerated master’s program allows students who have advanced degree aspirations the ability to save money by completing their studies quicker and to enter the job market sooner.

The Quality Engineering and Management accelerated program with the non-thesis option requires satisfactory completion of twelve hours in core courses: QEM 510, QEM 525, QEM 530 and QEM 540 and eighteen hours of elective graduate credit, which may include nine IMAE credit hours at the 400-level taken as an undergraduate.

The Quality Engineering and Management accelerated program with the thesis option requires satisfactory completion of twelve hours in core courses: QEM 510, QEM 525, QEM 530, and QEM 540, six hours of thesis and six hours of elective graduate credit, which may include IMAE credit hours at the 400-level taken as an undergraduate.

Admission

Candidates for this program must be accepted by the Graduate School and the Department of Technology. Candidates should possess a bachelor’s degree with a major in a technical area and have a GPA of no less than 3.0/4.0. A student whose undergraduate training is deficient may be required to take additional courses to compensate for deficiencies identified by the technology graduate program committee.

This program requires a nonrefundable $65 application fee that must be submitted with the application for admission to graduate study in quality engineering and management. Applicants must pay this fee by credit card.

Program Requirements

Graduate students who have been admitted into the Quality Engineering and Management master’s program must complete a total of 30 semester hours of graduate-level credit of which 15 hours must be at the 500 level.

1. The candidate’s program must include QEM 510, QEM 525, QEM 530 and QEM 540 (a total of 12 semester hours).
2. The remaining 18 semester hours will include graduate elective courses in QEM and/or IMAE 400-level courses, if not taken as part of the undergraduate curriculum.

*Note: IMAE courses taken for undergraduate credit cannot be applied towards graduate credit hours, unless the student has been accepted into the accelerated master’s program.

In the thesis option a program of study including the above required courses (12 semester hours), the master’s thesis (six semester hours), and the remaining 12 semester hours will be selected by the graduate adviser and the student.

Additional Information

Teaching or research assistantships and fellowships are available for qualified applicants. Additional information about programs, courses, assistantships, and fellowships may be obtained from the College of Engineering or from the chair of the department.

Courses (QEM)

QEM 505-3 Research Methods. The objective of this course is to familiarize the students with the methods needed in research. Emphasis is placed on how these methods can be applied in the quality engineering & management area. Topics include development of research proposals, use of statistics in the analysis and communication of the results. Restricted to enrollment in quality engineering and management program or consent of instructor.

QEM 510-3 Quality Assurance. Study of recent advances in
QEM 530-3 Lean Manufacturing II. This course will cover the principles and techniques of lean manufacturing, including value stream mapping, pull system/Kanbans, continuous improvement/Kaizen, lean six sigma, lean simulation, and other modern lean manufacturing techniques and issues. Prerequisite: IMAE 470A, 470B, and 480.

QEM 535-3 Service Quality. This course examines how organizational leadership, strategic development, and deployment of service management systems are used to achieve service quality. Key service quality management concepts of customer and market focus, employee focus, communication, and service delivery will be taught through the use of case studies, article reviews, and team projects. Prerequisite: none.

QEM 540-3 Reliability Analysis. The objective of this course is to provide the student with an overview of the basic techniques applied in the field of reliability and failure data analysis in a manufacturing environment. Prerequisite: IMAE 470B.

QEM 545-3 Project Management II. This course is an advanced study of the concepts in project management, building on the fundamentals established in prerequisite courses. Using MS Project, students will work individually and in teams to develop appropriate tools and documentation typically utilized to implement, control, and closeout projects. Computerized scheduling and cost control, quality systems, risk management, procurement, and project termination. Prerequisite: IMAE 450.

QEM 546-3 Project Management for Supply Chain Engineering. The course is designed to provide students with an introduction to the project management process and an in-depth examination of the activities needed to successfully initiate, plan, schedule, and control the time and cost factors of the project as it relates to developing a supply chain system. Executing successful supply chain projects requires the management of technology, people, culture, stakeholders, and other diverse elements. This course takes an integrated approach to managing projects, merging both technical and managerial challenges. It emphasizes not only individual project execution, but also provides a strategic perspective, demonstrating means to manage supply chain projects at the program and portfolio levels.

QEM 550-3 Project Leadership. This course is designed to develop a graduate student’s human relationship skills for leading project teams. Through the use of case studies and practical applications, students will learn effective leadership, team development, motivational, organizational planning, and conflict resolution practices.

QEM 555-3 Human Safety and Risk Management. Understanding risk and safety issues inevitably involves many disciplines, as does their effective management. The course teaches students to identify, assess, and develop strategies to mitigate occupational and environmental risk. Methods used to effectively communicate and understand risk factors as presented by various agencies.

QEM 560-3 Supply Chain Engineering. The objective of this course is to introduce the basic principles and techniques of the Lean methodologies and its application targeting specific needs of the Supply Chain professionals in executive sales and operations planning, forecasting, customer relationships, leveling production, dependent demand materials management, capacity management, shop floor control, inventory management, lot sizing, warehousing, logistics, quality control, and purchasing.

QEM 562-3 Transportation and Logistics Systems. The course covers different components of logistics and distribution; in particular, those dealing with material movement, associated moveable and immovable facilities/resources, procurement and material refurbishing, warehousing and distribution network systems, and transportation. The major thrust of the course is to explore the optimal planning, design, and coordination of large scale warehousing operations and distribution logistics, supply transportation systems (shipping and materials tracking), multi-modal transportation systems, and convoy movements.

QEM 564-3 Facilities and Location Planning. The course encompasses the planning, design, development, management, and control of production and distribution systems to effectively distribute goods and services from the producer to the end user, whether in manufacturing or service systems. Topics include analytical approaches in site location, facility layout, material handling, and storage systems. Aspects of facilities for manufacturing, material handling, packaging and distribution, and environmental risk. Methods used to effectively identify, assess and develop strategies to mitigate occupational and environmental risk. The use of information and communication technologies (ICT) dominates the world of business. There are ongoing fundamental changes in the way organizations execute their business processes and interact with each other. This course helps students understand the relationship between information systems and business performance. This will enable students to appreciate the importance of strategic implementation and proper manage of ICT resources.

QEM 570-3 Energy Management and Conservation. This course covers the principles and policies of energy management and auditing. It covers development, implementation, and economic analysis, using simple pay back and life-cycle cost models, of these programs and audits. It focuses on efficient operation...
of electric motors, lighting, boilers, furnaces, and facilities climate control. It surveys current energy policy with emphasis on LEED design and certification. Prerequisites: MATH 150 or IMAE 307, PHYS 203A,B or equivalents.

QEM 580-1 to 4 Seminar. Collective and individual study of issues and problems related to quality engineering and management. Graded S/U. Restricted to enrollment in the M.S. degree in quality engineering and management.

QEM 583-3 Analysis of Statistical Quality Data. Controlling and improving quality has become an important business strategy for many organizations: manufacturers, distributors, transportation companies, financial services organizations, health care providers, and government agencies. Maintaining a high level of product or service quality provides a competitive advantage. A business that can delight customers by improving and controlling quality can dominate its competitors. This course covers the technical methods for achieving success in quality control and improvement, and offers guidance on how to successfully implement these methods.

QEM 585-3 Advanced Data Analysis & Design of Experiments. Experimentation plays an important role in product development and process realization and commercialization activities, which consist of new product design and formulation, manufacturing process development, and process improvement. The objective in many cases may be to develop a robust process, a process affected minimally by external sources of variability. The purpose of this course is to provide the student with a comprehensive coverage of the knowledge areas involved in these studies, focusing on Planning, Designing and Analyzing Experiments (DoE).

QEM 592-1 to 4 Special Investigations in Quality Engineering and Management. Advanced topics in quality engineering and management. Topics are selected by mutual agreement of the student and the instructor. Special approval needed from the adviser.

QEM 599-1 to 6 Thesis.
QEM 601-1 per semester Continuing Enrollment. For those graduate students who have not finished their degree programs and who are in the process of working on their dissertation, thesis or research paper. The student must have completed a minimum of 24 hours of dissertation research, or the minimum thesis, or research hours before being eligible to register for this course. Concurrent enrollment in any other course is not permitted. Graded S/U or DEF only.