Geography and Environmental Resources

COLLEGE OF LIBERAL ARTS
www.geography.siu.edu
jabsher@siu.edu

Graduate Faculty:

Baumann, Duane D., Professor, Emeritus, Ph.D., Clark University, 1968; 1967.
Christensen, David E., Professor, Emeritus, Ph.D., University of Chicago, 1968; 1967.
Duram, Leslie, Professor, Ph.D., University of Colorado at Boulder, 1994; 1994.
Horsley, Doc., Assistant Professor, Emeritus, Ph.D., Southern Illinois University Carbondale, 1974; 1968.
Lant, Christopher L., Professor, Ph.D., University of Iowa, 1988; 1988.
Lieber, Stanley R., Professor, Emeritus, Ph.D., University of Iowa, 1974; 1975.
Oyana, Tonny J., Associate Professor, Ph.D., SUNY-Buffalo, 2003; 2003.
Perk, H.F.W., Lecturer, Emeritus, A.B., University of California, Los Angeles, 1951; 1964.
Remo, Jonathan, W.F., Assistant Professor, Ph.D., Southern Illinois University Carbondale, 2008; 2012.
Schoof, Justin, T., Associate Professor and Chair, Ph.D., Indiana University, 2004; 2006.
Wang, Guangxing, Associate Professor, Ph.D., University of Helsinki, Finland, 1996; 2007.
Weinert, Julie, Senior Lecturer, Ph.D. Ohio State University, 2008; 2005.

The Department of Geography and Environmental Resources offers a program that leads to the Master of Science degree in geography and environmental resources. The Department also participates in the Environmental Resources and Policy Doctor of Philosophy program sponsored by the Graduate School (described in greater detail elsewhere in the Graduate Catalog).

Geography and Environmental Resources is the study of how humans modify, impact, adapt to, monitor, and manage the natural environment they inhabit. Geography students study the dynamic relationship between nature and society in the field and the computer laboratory as well as in the traditional classroom. Students choose among three concentrations focusing on different aspects of geography and environmental resources: environmental sustainability, geographic information science (GIS), and climate and water resources.

Students take courses that give them a foundation in these dimensions of environmental resources through a core program, then develop a research focus. Students also develop the analytic and research skills appropriate to their research interest.

The graduate program stresses a problem-solving perspective, for which habits of critical analysis and dialogue are essential. Students take the initiative in designing and carrying out their programs with the guidance of an advisory committee and the departmental faculty. Geography maintains linkages with many other departments. Courses and faculty expertise in other departments complement those in geography, and students are encouraged to take advantage of this. Each student's progress is assessed at regular intervals by the faculty, and the student is notified of the faculty's assessment. The student is expected to show continued progress in carrying out the program of study, and in developing habits of scholarship and professionalism.

This program requires a $50.00 nonrefundable application fee that must be submitted with the application for Admissions to Graduate Study in Geography and Environmental Resources. Applicants may pay this fee by credit card when completing the on-line application. The application fee can also be paid by personal check, cashier's check, or money order made payable to SIU, and cleared through a U.S. Bank. Do not send cash.

Requirements for the Master of Science Degree

Advisement. Students newly admitted to the master's degree program are advised by the graduate program director, with the assistance of departmental faculty. Students choose a permanent adviser at the end of the first semester in residence. The choice of permanent adviser and advisory committee is made in consultation with the graduate faculty, taking into consideration such matters as faculty expertise and faculty advisee loads.

Degree Requirements. To obtain the master's degree, the student shall:

1. Complete all degree requirements specified by the Graduate School, and explained under degree requirements, master's degree program in the Graduate Catalog. A total of 30 SCHs must be completed, with 15 of these hours at the 500 level or above.

2. Include as required courses the following: GEOG 500, Principles of Research, during the first fall semester in residence; GEOG 501 Seminar in Geographic and Environmental Research, the following semester; GEOG 504, Spatial Analysis or GEOG 512, Applied Geographic Statistics or equivalent, and one research seminar at the 500-level. GEOG 502, Introduction to Geographic Information Systems is recommended depending on the student's background.

3. In consultation with an adviser, develop a program of study, identifying courses to be taken, research skills to be developed, deficiencies to be rectified. This shall be approved by the faculty. The program of study shall include a core of substantive courses in geography and environmental resources, as explained in the policy statement on core curriculum for master's degree students, available from the graduate program director. The program of study may include courses offered by other departments. The graduate faculty will meet to review and approve/disapprove the program of study of each master's degree student enrolled.
Certificate in GIS
The Graduate GIS Certificate enables students to focus on advanced geospatial techniques and analytical skills. This certificate meets the needs of the expanding job opportunities for Masters’ and Ph.D. students. This certificate ensures that the students understand advanced mapping technologies; know how to combine individual models and functions in ArcGIS to carry out a complicated spatial analysis task; master advanced digital image processing and analysis technologies; and obtain competence in designing, developing, and managing spatial databases. Further, they will demonstrate an understanding of GIS’s relationships with remote sensing, global positioning system (GPS), mathematics, statistics, and other sciences and obtain capacity in integrating multi-disciplinary methods for problem-solving. Finally, they will be competent in planning, developing, and implementing a complex GIS project. The program requires students to complete 18 credit hours of graduate level coursework from the following:

- GEOG 502(3) Intro to Geographic Information Systems
- GEOG 504(3) Spatial Analysis
- GEOG 506(3) Intro to Remote Sensing
- GEOG 508(3) Advanced Remote Sensing
- GEOG 520(3) Advanced GIS Studies
- GEOG 528(3) GIS Portfolio/GIS Capstone Project

Certificate in Sustainability
The Graduate Certificate in Sustainability enables students to expand their knowledge and understanding of the long-term sustainable use of the earth’s resources, including water, land use and food systems, climate change, urban sustainability, and “green” energy. This certificate meets the needs of the expanding job opportunities in environmental sustainability. Students must maintain a 3.0 GPA in the certification courses. The program requires students to complete 18 credit hours of graduate level coursework, as follows:

- GEOG 524(3) Sustainable Development
- GEOG 521(3) Urban Geography
- GEOG 522(3) Economics of Environmental Sustainability

- GEOG 526(3) US Environmental Policy
- GEOG 529(3) Geography of Local and Organic Food
- GEOG 531(3) Climatology
- GEOG 536(3) Natural Hazards
- GEOG 539(3) Global Climate Change
- GEOG 554(3) Conservation and Environmental Movements
- GEOG 570(3) Contemporary Issues in Environmental Studies

Students interested in Environmental Sustainability or Climate and Water Resources concentrations delivered through distance education should contact the Chair or Graduate Program Director to discuss opportunities for transfer credits and flexibility in course requirements. Requirements for the Doctor of Philosophy Degree (See Environmental Resources and Policy Ph.D. program.)

Courses (GEOG)

417-3 GIS Programming and Customization. An intro to computer programming principles and their application in a Geographic Information Systems environment. GIS scripting language principles will be introduced and students will learn the structure of ArcObjects, the program organization of ESRI and ArcGIS products as well as the use of Visual Basic application to manipulate the basic mapping objects. Coursework will involve developing a more advanced program using an extension of choice. Prerequisite: GEOG 401 or consent of instructor. Lab Fee: $20.

419-3 Enterprise GIS Planning and Implementation. Students will gain both theoretical and practical understanding of the design process of enterprise GIS; be able to assess the scope of a system and address data and technology requirements of that system; become exposed to a host of the state-of-the-art tools and concepts in enterprise GIS; and learn skills for hardware, software and computer networking issues. Students are expected to have a basic working knowledge of ArcGIS and ArcIMS. Prerequisite: GEOG 401 or consent of instructor. Lab Fee: $20.

430-3 Environmental Systems Analysis. Exploration of the major environmental systems relevant to environmental planning. Topics include concepts of systems and system behavior; basics of systems analysis and modeling environmental systems; environmental fluxes of energy and materials (e.g., hydrologic cycle, carbon cycle, energy budgets, erosion and sediment transport, role of biosphere in organizing fluxes); environmental variability.

452-3 Environment and Population. Introduction to population geography. Emphasis is on the relationships between population trends, resource use patterns and environmental impacts. Topics include methods and data used to describe and predict populations, theories of population, and policy issues that relate to the interaction between population, quality of life and environmental quality. Prerequisite: GEOG 320 or consent.

454-3 Conservation and Environmental Movements. Emphasizes the ways in which humans view and interact with the environment. Conservation literature and the works of influential environmentalists are studied. Specific theories and environmental movements which help to explain society’s current perception and use of the environment are studied.
457-3 American Environmental History. (Same as HIST 457) An exploration of the attitudes toward and the interaction with the natural resource environment of North America by human settlers. Coverage from the Neolithic Revolution to the present.

458-3 Applied GIS. This course provides practical GIS applications and draws from special topics in data visualization and environmental applications. The topic on data visualization includes an overview of techniques for visualizing large-scale datasets and is inspired by concepts from information visualization. Topics in environmental applications consist of risk assessment, digital elevation model processing, and watershed delineation and hydrological modeling. Students taking this course will distinctively learn: (1) how to visualize geographic data; (2) how to use different environmental risk assessment methods; (3) how to assess, detect, and characterize environmental risks and potential threats; and (4) how to create meaningful visualization scenes to support environmental decision-making. Active learning experiences will be achieved through the use of classroom lectures, lab exercises, group tasks, and presentations. Prerequisite: GEOG 401 or GEOG 310I or consent of instructor. Lab fee: $20.

470-3 Contemporary Issues in Environmental Studies. Background, current, and future issues linking social responses to scientifically relevant environmental issues. Students learn about the multiple geographic, social and ecological factors that influence environmental citizenship and participation. Topics include conservation/preservation, green jobs, environmental non-governmental organizations, policy influences, and environmental education. Lectures, guest lectures and seminar style discussions. Students develop and demonstrate skills in problem solving, communication, and professionalism.

471-3 Environmental Impact Analysis. Techniques of assessing the impact of human activities on the environment, including weighting schemes, cost-benefit analysis, linear programming, and ecological impact assessment. Emphasis is on placing NEPA and EIS writing in legal, economic and environmental perspective.

480-2 to 6 Internship in Geography. Supervised field work in private or public organization dealing with environmental management or GIS. A report or professional poster on the work is required at the end of the semester. Courses may be repeated, but no more than 3 credit hours of either 480 or 481 may be applied to an undergraduate major or graduate degree. Restricted to students majoring in Geography and Environmental Resources or minoring in Environmental Studies. Special approval needed from the department.

481-3 to 12 Cooperative Work Experience in Geography. Placement of advanced undergraduate or graduate student in private or public organization for one or more semesters in paid career-related position. Student gains professional experience, under faculty and on-site supervision. A report or professional poster on the work is required at the end of the semester. Three credit hours of either 480 or 481 may apply toward requirements for a Geography undergraduate major or graduate degree. Restricted to students majoring in Geography and Environmental Resources or minoring in Environmental Studies. Special approval needed from the department.

500-3 Principles of Research. Problem identification in research, review of examples of geographic research, analysis of results of research and project statements are explored with appropriate faculty. Presentation of student research problems justification and identification of student program to complete degree are required.

501-3 Seminar in Geography and Environmental Research. Seminar approach to problems of completing background research design of project statements, identification of research methodology and completion of thesis/dissertation project statements. Restricted to graduate standing.

502-3 Introduction to Geographic Information Systems. (Same as GEOG 401) An introduction to geographic information system (GIS)-related topics, including GIScience (theoretical foundation), GIS technology (software training), and GIS applications (real-world solutions). Provides basic principles, concepts and applications of GIS in the context of GIScience - a basic research field, which seeks to redefine geographic concepts and their use. The theoretical foundations of GIS are informed by three basic areas: cognitive models of geographic concepts, computational and implementations of geographic models, and the interaction between GIS and society. Recommended: GEOG 310I or CE 263. Lab fee: $20.

504-3 Spatial Analysis. (Same as GEOG 404) This spatial analysis course is an introduction to statistical methods for geographers. The course provides an overview of the application of spatial data analysis techniques, with a concentration on spatial statistical theories, concepts and approaches in the general context of the emerging fields of geographic information system (GIS) and science (GISci). The main focus of this course is on how techniques for the analysis of spatial data can effectively be applied in a GIS environment, with a particular emphasis on the study of spatial patterns, distributions, and associations. Prerequisite: GEOG 401 or 501, or consent of instructor. Lab fee: $20.

506-3 Introduction to Remote Sensing. (Same as GEOG 406) An introduction to the fundamentals of remote sensing as applied to environmental management. This course will examine the theoretical and practical aspects associated with the use and analysis of aerial photography and satellite imagery. These include how remote sensing data are acquired, displayed, analyzed and how information on our environment can be extracted from such data. Students will be introduced to manual interpretation and digital image processing techniques of remotely sensed imagery. Students will have the opportunity to gain hands-on experience using image processing software. Lab fee: $30.

508-3 Advanced Remote Sensing. (Same as GEOG 408) Advanced techniques in the analysis of remotely sensed data. Emphasis is placed on digital image processing using state of the art technology. Students will be expected to develop individual problem-driven projects that use the knowledge, tools and techniques that are developed in this course. Prerequisite: GEOG 406, 506, or consent of instructor. Lab fee: $30.

512-3 Applied Geographic Statistics. Introduction to basic statistical methods and skills related to the application of statistics to problems in geography. Lectures are supplemented with meetings in computer labs to stress the applied aspects of the
course. Topics covered include descriptive statistics, time series analysis, probability, confidence intervals, hypothesis testing, correlation and regression, and spatial statistics.

516-3 Cartographic Design. (Same as GEOG 516) Introduction to the concepts and principles of map design and automated cartographic techniques used to promote the understanding of a map as a powerful communication model. Examines techniques for the representation, manipulation, display, and presentation of spatial data using computer mapping techniques and graphics software. Team based projects will address a geographic problem and produce a professional final map. Prerequisite: GEOG 401, 502, or consent of instructor. Lab fee: $20.

520-3 Advanced Geographic Information Systems Studies. (Same as GEOG 420) This course focuses on six emerging themes of geographic information science: geospatial ontologies, enterprise GIS, GIS design, geographic data mining and knowledge discovery, geographic data structure and algorithms, 3D imaging and visualization. A seminar approach will be adapted to organize the class into five groups to capture skills in computer programming, cognitive science, database design and systems, computational and mathematical knowledge, and 3D imaging and visualization. Five studio exercises to provide hands-on training and practice will be conducted in the GIS laboratory. Students will be expected to develop individual problem-driven projects that use the knowledge, tools, and techniques that are developed in this course. Prerequisites: GEOG 401 or 502 with a grade of C or better, or consent of instructor. Lab Fee: $20.

521-3 Urban Sustainability. Sustainability of urban areas is viewed from a geographical perspective to focus on the complex relationships among environmental, sociocultural, economic, and political phenomena. Considerable time is devoted to identifying, analyzing and explaining selected urban problem and their sustainable solutions.

522-3 Economics of Environmental Sustainability. A neo-classical, institutional and ecological economics approach to natural resources, environmental services, and policies governing them. Benefit-cost and cost-effectiveness analysis are applied to problems in various natural resource sectors and to analyzing environmental policies with an emphasis on water resources. Market failure in environmental services as well as valuation techniques and institutional arrangements to overcome it are also addressed in a sustainability context. These issues are addressed in a more advanced mathematical form than in GEOG 422. Restricted to graduate standing.

524-3 Sustainable Development. Analysis of the human, economic, technological, environmental and political dimensions of sustainable development focusing on public and private sector institutions that manage renewable and non-renewable natural resources. Emphasis is sustainable development as applied to: (a) population, (b) energy and the atmosphere, and (c) agricultural impacts on soil and water resources.

525-3 Advanced Water Resource Management. The purpose of this course is to provide the student with an overview of concepts, theory, and policies in water resource management and a deeper understanding in at least one topic within water management. This is accomplished through instructor led lectures, assigned readings, and in class exercises that teach the student about the concepts that underpin water management during the first half of the semester. Then in the second half of the semester, each of the students selects the water management topic and teaches the class about the subject through lecture and discussion of keystone papers in their selected water management topic.

526-3 US Environmental Policy. This course investigates the US system of environmental regulation: the background of social and environmental movements that influence US policy and the agencies involved in US environmental regulation. Emphasis is on US regulations and US participation in global environmental policies. Overall, the focus is on spatial variations in environmental regulation; or the geography of environmental quality.

528-3 GIS Portfolio / GIS Capstone Project. (Same as GEOG 428) Independent development and implementation of a major GIS project on analysis of spatially referenced data sets to produce digital products and to solve real world problems. Data obtained from multiple sources, including downloads from online sources, field-collected data, and published map data. A project portfolio and a poster approved by the instructor must be submitted for successful completion. Prerequisite: GEOG 401 or 502 and 406 or 506, and consent of instructor. Lab fee: $20.

529-3 Seminar: Geography of Local and Organic Food. A discussion of geographic topics in local and organic food and farming. This includes: spatial distributions, landscapes, policy influences, organic agricultural productivity, food safety, consumer concerns, organic farmers’ decision making, organic marketing, local food systems, and organic certification. Restricted to graduate standing.

531-3 Climatology. Contemporary view of climatology as an interdisciplinary science which focuses on advanced understanding of the physical processes that drive the climate system and the development of skills related to climate prediction and assessment of human impacts on global and regional climate.

533-3 Advanced Field Methods in Geography. This course investigates the development of skills related to climate prediction and assessment of human impacts on global and regional climate.

534-3 Water Resources Hydrology. Microclimatic factors which affect the hydrologic events of various climatic regions are treated extensively. Methods of estimating geographic variations in hydrologic relations to climatic and microclimatic especially evapotranspiration, are compared and evaluated. Consequences of alternative land uses on climate and hydrology are considered regionally.

536-3 Natural Hazards. This course develops the skills and perspectives needed to effectively manage natural and technological disasters. Major themes include risk analysis, hazard mitigation and preparedness, response and recovery of the economic and social infrastructure in areas impacted by earthquakes, floods, drought, toxic material releases and other catastrophic events. Geographic training places a geographer at the forefront of developing hazard management solutions for society.

539-3 Seminar on Global Climate Change. This course examines the major environmental, social, and policy issues relevant
to global climate change, including natural and anthropogenic causes, environmental pollution, land use/land cover change, extinction and biodiversity issues, and potential climate change-related impacts on human health. Restricted to graduate standing.

554-3 Conservation and Environmental Movements. This course emphasizes the ways in which humans view and interact with the environment. Conservation literature and the works of influential environmentalists are studied. Specific theories and environmental movements which help to explain society’s current perception and use of the environment are studied.

556-3 Geographic Visualization. (Same as GEOG 456) This course will provide an overview of geographic visualization with a concentration on the theories, concepts and approaches of information visualization. Lectures and laboratory exercises will focus on the practical issues of exploratory data analysis (EDA), cartographic design process, web cartography, data quality and generalization, thematic mapping, map animation and multi-media applications. The course will provide students with a working knowledge of commercial software commonly used for graphic-based applications. Students are expected to utilize their hands-on experience gained from the lab exercises to further enhance their proficiency in graphic software. Two hours of seminar and classroom presentations, two hours of studio exercises each week. Lab fee: $30.

570-3 Contemporary Issues in Environmental Studies. Background, current, and future issues linking social responses to scientifically relevant environmental issues. Students learn about the multiple geographic, social and ecological factors that influence environmental citizenship and participation. Topics include conservation/preservation, green jobs, environmental non-governmental organizations, policy influences, and environmental education. Lectures, guest lectures and seminar style discussions. Students develop and demonstrate skills in problem solving, communication, and professionalism.

591-2 to 4 Independent Studies in Geography. Restricted to graduate standing.

593A-2 to 24 (2 to 6 per semester) Research in Environmental Sustainability. Restricted to graduate standing.

593B-2 to 24 (2 to 6 per semester) Research in Geographic Information Science. Prerequisite: GEOG 500 and GEOG 501. Restricted to graduate standing.

593C-2 to 24 (2 to 6 per semester) Research in Climate & Water Resources. Restricted to graduate standing.

596-2 to 4 Field Course. Restricted to graduate standing.

599-2 to 6 Thesis. Restricted to graduate standing.

601-1 per semester Continuing Enrollment. For those graduate students who have not finished their degree programs and who are in the process of working on their thesis, or research paper. The student must have completed the minimum thesis or research hours before being eligible to register for this course. Concurrent enrollment in any other course is not permitted. Graded S/U or DEF only.

699-1 Postdoctoral Research. Must be a Postdoctoral Fellow. Concurrent enrollment in any other course is not permitted.