MEDICAL DOSIMETRY

COLLEGE OF APPLIED SCIENCES AND ARTS

Graduate Faculty:

Collins, Kevin Scott, Associate Professor, M.S., Southern Illinois University Carbondale, 2001; 2000. Radiation therapy.
Collins, Sandra K., Assistant Professor, MBA, Southern Illinois University Carbondale, 2003; 2000. Health care management, access-to-care and shift in population demographics.

Matthews, Eric, Assistant Professor, Ph.D., Southern Illinois University Carbondale, 2008; 2003. Radiological sciences.

Other related dosimetry courses taught by medical physicists on contract.

**

TRACK 1

Mission: The mission of the Medical Dosimetry Program offered by Southern Illinois University Carbondale (SIUC) is to provide a quality program integrating education, research and service in order to meet the needs of the profession and improve health care of the people and communities we serve.

Program Goals
1. Prepare the student to practice as an entry level professional Medical Dosimetrist by offering a comprehensive curriculum and quality didactic/clinical instruction.
2. Provide didactic and clinical experiences that lead to research in educational, professional, or health care issues relating to medical dosimetry.
3. Provide avenues to students for professional development and growth within the profession.
4. Provide avenues for students to develop and apply skills in effective communication, analytical and critical thinking and problem-solving necessary for successful medical dosimetry practice.
5. Provide a clinical and didactic environment which leads to the development of clinical skills and competence appropriate to an entry level Medical Dosimetrist.

Program Description
The Medical Dosimetrist is a member of the Allied Health and Radiation Oncology Team.

Course material and practicum covers radiation physics, radiation protection, dose calculations, tumor localization, external beam treatment planning, brachytherapy, quality assurance, medical imaging/anatomy, clinical radiation oncology, and radiobiology. Clinical practicum includes external beam treatment planning, brachytherapy treatment, preparation and planning, chart reviews and dose calculations, record and verify system data entry, simulation (conventional and CT-simulation), treatment aid fabrication, treatment machine quality assurance, stereotactic treatment planning, gamma knife, IMRT planning and treatment. Special project assignments, conference attendance, written reports, chapter reviews, and labs are also part of the curriculum.

Accreditation
The Medical Dosimetry Program is fully accredited through the Joint Review Committee on Education in Radiologic Technology (JRCERT). The program at SIUC was the third accredited program in the United States. www.jrcert.org.

The program meets the formal education eligibility criteria for the national certification exam following graduation and six months of full-time employment, as required by the Medical Dosimetry Certification Board. www.mdcb.org.

General Description of a Medical Dosimetrist
The Certified Medical Dosimetrist (CMD) is a member of the radiation oncology (cancer treatment) team who has knowledge of the overall characteristics and clinical relevance of radiation oncology treatment machines and equipment, is cognizant of procedures commonly used in brachytherapy (treatment with radioactive sources at a close distance) and has the education and expertise necessary to generate radiation dose distributions and dose calculations in collaboration with the Medical Physicist and Radiation Oncologist.

Major Duties
- Design a treatment plan by means of computer and/or manual computation that will deliver a prescribed radiation dose and field placement technique in accordance with the Radiation Oncologist’s prescription to a defined tumor volume.
- Consider dose-limiting structures in the design of treatment plans and document dose in accordance with the Radiation Oncologist’s prescription.
- Coordinate treatment simulations and tumor localization on dedicated devices, including...
Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET) when indicated, for radiation oncology treatment planning.

- Supervise, perform, or assist in the planning of the fabrication of compensation filters, custom shields, wedges, and other beam modifying devices.
- Supervise, perform, or assist in the planning of the production of moulds, casts, and other immobilization devices.
- Supervise therapy staff in the implementation of the treatment plan including: the correct use of immobilization devices, compensators, wedges, field arrangement, and other treatment variables.
- Perform calculations for the accurate delivery of the Radiation Oncologist's prescribed dose, document all pertinent information in the patient record, and verify the mathematical accuracy of all calculations using a system established by the Medical Physicist.
- Provide physics and technical support to the Medical Physicist, in radiation protection, qualitative machine calibrations, and quality assurance of the radiation oncology equipment.
- Supervise, perform, or assist in the application of specific methods of dosimetry including ion chamber, TLD, or film measurement as directed by the Medical Physicist.
- Assist in intracavitary and interstitial brachytherapy procedures and in the subsequent manual and/or computer calculation of the dose distributions of these treatments.
- Teach applied aspects of medical dosimetry to students and residents, as assigned.
- Participate in clinical research for the development and implementation of new techniques.

- Participate in continuing education in the area of current treatment planning techniques, and advances in medical dosimetry.

Source: www.medicaldosimetry.org

Eligibility for the Master of Science Program in Medical Dosimetry Track 1

Preferred candidates are individuals who have a baccalaureate degree and have been trained as a radiation therapist.

Consideration is given to applicants with a bachelor's degree in the physical or biological sciences without radiation therapy experience.

Number of Students

Due to clinical hour requirements and the number of clinical sites, a maximum of 10 students per year will be allowed at this time. There will be approximately 3-4 internship sites for the St. Louis area students. Students outside the St. Louis area will rotate through 1-2 clinical sites.

Application

Applications should be received by February 1st of the year one plans to attend the program. Class selection will occur in February/March. Two separate applications are required:

- One for the program and one for the Graduate School.

For more information about admission policies, transfer credit, tuition and fees, refund policies, academic calendars, academic policies, graduation requirements, and student services please review "Degree Requirements, found in Chapter 1, of in the Graduate Catalog www.gradschool.siuc.edu/catalog.htm.

Class Location

The program offers education at various clinic sites and didactic education is delivered via distance learning. Live video conferencing equipment is used to allow students to interact with the instructors in real time.

Clinic Sites

- **Siteman Cancer Center**
 - Barnes-Jewish Hospital
 - Mailstop 90-38-635, 4921 Parkview Place
 - St. Louis, Missouri 63110

- **Cancer Treatment Center, Memorial & St. Elizabeth Health Care Services, LLP**
 - 4000 North Illinois
 - Belleville, Illinois 62226

- **SSM De Paul Health Center**
 - 12303 DePaul Drive
 - St. Louis, Missouri 63044-2588

- **Siteman Cancer Center**
 - 150 Entrance Way
 - St. Peters, Missouri 63376

- **St. Lukes Hospital**
 - 232 South Woodsmill Road
 - Chesterfield, Missouri 63017

- **Alexian Brothers Medical Center**
 - 820 Biesterfield
 - Elk Grove, Illinois 60007

- **St. Alexius**
 - 1555 Barrington Road
 - Hoffman Estates, IL 60169

- **St. Francis Hospital**
 - 6161 South Yale
 - Tulsa, Oklahoma 74136
Expenses
Tuition: $12,000 for the calendar year.
Textbooks and Lab Coat: Approximately $500 - $600
Living Expenses: Students must find housing on their own.
This can vary greatly.

A Computer, Scanner, and High Speed Internet will be
required. Computer and bandwidth specifications will be
shared once accepted into the program.

Curriculum
The total curriculum consists of 30 semester hours. Program length is 52 weeks and the students attend
classes/clinical for 40 hours per week.
 Didactic component is approximately 300-350 hours.
 Clinical component is approximately 1650 - 1700 hours.
The student will have approximately 2000 hours of
education per year and have 80 hours of vacation.

Fall Semester
RAD 510-2 Simulation and Cross Sectional Anatomy in
 Medical Dosimetry
RAD 515-4 Medical Dosimetry Clinical I
RAD 520-3 The Physics of Medical Dosimetry I
RAD 525-3 Seminars in Medical Dosimetry I

Spring Semester
RAD 530-2 The Essentials of Medical Dosimetry
RAD 535-4 Medical Dosimetry Clinical II
RAD 540-3 The Physics of Medical Dosimetry II
RAD 545-3 Seminar in Medical Dosimetry II

Summer Semester
RAD 550-2 Medical Dosimetry Clinical III
RAD 560-2 Seminar in Medical Dosimetry III
RAD 565-1 to 6 Independent Study

Program Director Contact Information:
Scott Collins, MS.Ed, R.T.(R)(T), CMD
Medical Dosimetry Program Director
School of Allied Health, MC 6615
Southern Illinois University Carbondale
Carbondale, Illinois 62901
Office: 618-453-8800
Fax: 618-453-7020

Disclaimer
Content of the program materials is subject to change
without notice.

TRACK 2
Program Goals
1. Provide didactic experiences that lead to research
 in educational, professional, or health care issues
 relating to medical dosimetry.
2. Provide avenues to students for professional
 development and growth within the profession.
3. Provide avenues for students to develop and apply
 skills in effective communication, analytical and
 critical thinking and problem-solving necessary for
 successful medical dosimetry practice.
4. Provide a didactic environment which leads to the
 development managerial/educational skills
 appropriate to a Medical Dosimetrist.

Program Description
The Medical Dosimetrist is a member of the Allied Health
and Radiation Oncology Team
Course material covers radiation physics, radiation
protection, dose calculations, tumor localization, external
beam treatment planning, brachytherapy, quality
assurance, medical imaging/anatomy, clinical radiation
oncology, and radiobiology. Special project assignments,
journal article reports, and chapter reviews as well as
management and education courses are also part of the
curriculum.
Accreditation:
The Medical Dosimetry Program is approved by the Illinois Board of Higher Education (IBHE) and The Higher Learning Commission of the North Central Association of Colleges and Schools.

General Description of a Medical Dosimetrist
The Certified Medical Dosimetrist (CMD) is a member of the radiation oncology (cancer treatment) team who has knowledge of the overall characteristics and clinical relevance of radiation oncology treatment machines and equipment, is cognizant of procedures commonly used in brachytherapy (treatment with radioactive sources at a close distance) and has the education and expertise necessary to generate radiation dose distributions and dose calculations in collaboration with the Medical Physicist and Radiation Oncologist.

Major Duties
Design a treatment plan by means of computer and/or manual computation that will deliver a prescribed radiation dose and field placement technique in accordance with the Radiation Oncologist's prescription to a defined tumor volume.
Consider dose-limiting structures in the design of treatment plans and document dose in accordance with the Radiation Oncologist's prescription.
Coordinate treatment simulations and tumor localization on dedicated devices, including Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET) when indicated, for radiation oncology treatment planning.
Supervise, perform, or assist in the planning of the fabrication of compensation filters, custom shields, wedges, and other beam modifying devices.
Supervise therapy staff in the implementation of the treatment plan including: the correct use of immobilization devices, compensators, wedges, field arrangement, and other treatment variables.
Perform calculations for the accurate delivery of the Radiation Oncologist's prescribed dose, document all pertinent information in the patient record, and verify the mathematical accuracy of all calculations using a system established by the Medical Physicist.
Provide physics and technical support to the Medical Physicist, in radiation protection, qualitative machine calibrations, and quality assurance of the radiation oncology equipment.
Supervise, perform, or assist in the application of specific methods of dosimetry including ion chamber, TLD, or film measurement as directed by the Medical Physicist.
Assist in intracavitary and interstitial brachytherapy procedures and in the subsequent manual and/or computer calculation of the dose distributions of these treatments.
Teach applied aspects of medical dosimetry to students and residents, as assigned.
Participate in clinical research for the development and implementation of new techniques.
Participate in continuing education in the area of current treatment planning techniques, and advances in medical dosimetry
Source: www.medicaldosimetry.org

Eligibility for the Master of Science Program in Medical Dosimetry Track 2
Applicants must be a Certified Medical Dosimetrist and be current with the Medical Dosimetry Certification Board (MDCB). These individuals must also have a baccalaureate degree from an accredited university. The baccalaureate degree and academic performance must meet the entrance requirements set forth by the Graduate School at SIUC.
Individuals that have been approved by the MDCB to take their exam may apply to the program but CMD verification must be documented before any classes may be taken.

Number of Students
There is no limit to the number of students accepted for Track 2.

Application
Continuous enrollment is allowed for Track 2. This means you may start the program with any semester but applications must be received 6 weeks prior to starting. Two separate applications are required: One for the program and one for the Graduate School.
For more information about admission policies, transfer credit, tuition and fees, refund policies, academic calendars, academic policies, graduation requirements, and student services please review the Graduate Catalog at: www.gradschool.siuc.edu/catalog.htm.

Class Location
Track 2 is offered on campus and via distance learning.

Expenses
Tuition: $400 per credit hour.
Textbooks: Approximately $500 - $600
Living Expenses: Students must find housing on their own. This can vary greatly.
A Computer, Scanner, and High Speed Internet will be required. Computer and bandwidth specifications will be shared once enrolled.
Source: www.medicaldosimetry.org
Curriculum
The total curriculum consists of 30 semester hours. Students may enroll full or part time for this program. For individuals employed full time, part time enrollment is recommended.

Fall Semester
RAD 511-3 Fundamentals of Health Care Systems
RAD 516-3 Cultural Foundations and Theories of Education
RAD 520-3 The Physics of Medical Dosimetry I
RAD 525-3 Seminars in Medical Dosimetry I

Spring Semester
RAD 531-3 Human Resource Management in Health Care
RAD 536-3 Introduction to Administration and Supervision in Allied Health
RAD 540-3 The Physics of Medical Dosimetry II
RAD 545-3 Seminar in Medical Dosimetry II

Summer Semester
RAD 551-3 Legal and Ethical Fundamentals of Health Care
RAD 556-3 Individual Research in Medical Dosimetry
RAD 565 1 to 6 Independent Study

Program Director Contact Information
Scott Collins, MS.Ed, R.T.(R)(T), CMD
Medical Dosimetry Program Director
School of Allied Health, MC 6615
College of Applied Sciences and Arts
Southern Illinois University Carbondale
Carbondale, Illinois 62901
Office: 618-453-8800
Fax: 618-453-7020

Disclaimer
Content of the program materials is subject to change without notice.

Courses (RAD)

510-2 Simulation and Cross Sectional Anatomy in Medical Dosimetry. This course covers the conventional and CT simulation techniques used in initiating radiation therapy for cancer patients. Identification of cross-sectional anatomy at different anatomical locations within the human body is also reviewed. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

511-3 Fundamentals of Health Care Systems. This course provides a multi-disciplinary analysis and is designed to provide students with information pertaining to the issues surrounding access to care, medical technology, and the complex financial structure of the health care system. Students will extensively examine aspects of the complex health care system such as managed care, Medicare, Medicaid, pharmaceuticals, health promotion and disease prevention, and the quality of care. Special approval needed from the instructor.

515-4 Medical Dosimetry Clinical I. This is the first course of a three course sequence. During the three course sequence, students will complete eight clinical rotations. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

516-3 Cultural Foundations and Theories of Education. Seminar provides an examination of the historical, social, economic and psychological foundations of allied health education with emphasis given to the nature and role of education and training in preparing for the field of medical education. The objectives of this seminar will allow the student to explore the nature and theories of education, the behavioral aspects of education including the assumptions and practices which underlie education. Special approval needed from the instructor.

520-3 The Physics of Medical Dosimetry I. This course covers the following topics: Radiologic Physics, production of x-rays, radiation treatment and simulation machines, interactions of ionizing radiation, radiation measurements, dose calculations, computerized treatment planning, dose calculation algorithms, electron beam characteristics, and brachytherapy physics and procedures. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

525-3 Seminars in Medical Dosimetry I. This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

530-2 The Essentials of Medical Dosimetry. This course covers the various quality assurance procedures performed in a radiation oncology department. Also included are various statistics topics to educate the student in becoming a good consumer of medical research literature. Professional development, billing/coding, HIPAA, and professional service are also addressed. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 510, 515, 520, and 525.

531-3 Human Resource Management in Health Care. This course examines/describes how human resource functions play a role in health care. It focuses on how each human resource function supports management initiatives.
This course scrutinizes how human resource functions such as employee selection, development, motivation, and appraisal can impact a health care organization's ongoing business continuity. It also examines the legal environment of human resources. Special approval needed from the instructor.

535-4 Medical Dosimetry Clinical II. This is the second of a three course sequence. During the three course sequence, students will complete eight clinical rotations. The length of these rotations varies from one to eleven weeks. During this course, students will perform two to four of these rotations depending on the rotation schedule. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 515.

536-3 Introduction to Administration and Supervision in Allied Health. This course provides students with an examination of nature, function, and techniques of administration and supervision in medical departments. This is accomplished through case analyses and practice simulations of human problems in the healthcare organization and application of findings of behavioral science research to healthcare problems. Emphasis will be placed on the development of the direction and leadership skills. Special approval needed from the instructor.

540-3 The Physics of Medical Dosimetry II. This course covers the following topics: Imaging for radiation oncology, IMRT, stereotactic radiosurgery, special procedures, particle therapy, hyperthermia, and radiation safety. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 520.

545-3 Seminar in Medical Dosimetry II. This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length. Prerequisite: A grade of “C” or better in RAD 545.

550-2 Medical Dosimetry Clinical III. This is the third course of a three course sequence. During the three week course sequence, students will complete eight clinical rotations. The length of these rotations varies from one to ten weeks. During this course students will perform one to two of these rotations depending on the rotation schedule. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 535.

551-3 Legal and Ethical Fundamentals of Health Care. This course provides students with an analysis of the legal and ethical environment of the health care industry. Focused on the health care environment, the course examines the judicial process pertaining to torts contracts, antitrust, corporate compliance, and access to care, negligence, and professional liability. The nature of ethics in the multi-cultural health care environment is examined with an analysis of the moral issues in health care. Special approval needed from the instructor.

555-2 The Physics of Medical Dosimetry III. This course covers the following topics: MU calculations, point dose calculations and radiation biology. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 540.

556-3 Individual Research in Medical Dosimetry. This course requires students to complete a research project in the field of Medical Dosimetry. Each project will have a written paper as a final product and this paper will be submitted for publication in one of the professional journals within the field of Radiation Oncology. Special approval needed from the instructor.

560-2 Seminar in Medical Dosimetry III. This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 545.

565-1 to 6 Independent Study. Directed independent study in selected areas of medical dosimetry studies. Special approval needed from the Program Director.

601-1 Medical Dosimetry Continuing Enrollment. For those graduate students who have not finished their degree programs and who are in the process of working on their thesis or research paper. Concurrent enrollment in any other course is not permitted. Graded S/U or DF only.

601-1 Medical Dosimetry Continuing Enrollment

For those graduate students who have not finished their degree programs and who are in the process of working on their thesis or research paper. Concurrent enrollment in any other course is not permitted. Graded S/U or DF only.