ENGINEERING

COLLEGE OF ENGINEERING—SIU Carbondale Faculty participating in the Engineering Science Ph.D. Program are listed under Civil Engineering, Electrical and Computer Engineering, Mechanical Engineering, and Mining Engineering.

COLLEGE OF ENGINEERING—SIU Edwardsville Faculty participating in the Engineering Science Ph.D. Program

Graduate Faculty:

Akin, Oktay, Professor and Chair, Department of Electrical and Computer Engineering-SIUE, Ph.D., University of Alabama, 1986; 1986.

Chen, Jen-Shiun, Professor, Ph.D., Ohio State University, 1983; 1986.

Ehmann, Bryan, Professor, Ph.D., Florida University, 1992; 2000.

Eneyes, Emmanuel S., Professor, Ph.D., Purdue University, 1991; 1989.

Engel, George, Associate Professor, D.Sc., Washington University; 1993.

Fujinoki, Hiroshi, Assistant Professor, Ph.D., University of Florida, 2001; 2001.

Gu, Keqin, Professor and Chair, Department of Mechanical and Industrial Engineering-SIUE, Ph.D., Georgia Institute of Technology, 1988; 1990.

Hubbard, Kevin, Associate Professor, Ph.D., University of Missouri-Rolla, 1996; 2001.

Karakal, S. Cem, Professor, Ph.D., Oklahoma State, 1991; 1993.

Krauss, Ryan, Assistant Professor, Ph.D., Georgia Institute of Technology, 2006; 2006.

Luo, Albert C.J., Associate Professor, Ph.D., University of Manitoba, 1995; 1998.

Molki, Majid, Professor, Ph.D., University of Minnesota, 1982; 2000.

Morgan, Susan M., Associate Professor, Ph.D., Clemson University, 1995; 1996.

Rosso, Mark P., Professor and Chair of Department of Civil Engineering-SIUE, Ph.D., University of Michigan, 1973; 1979.

Slattery, Kerry T., Assistant Professor, Ph.D., University of Mississippi, 1989; 1999.

Smith, Scott, Professor, Ph.D., University of Illinois, 1991; 1988.

Umbaugh, Scott, Professor, Ph.D., University of Missouri-Rolla, 1990; 1989.

Vous, Luis, Professor, Ph.D., University of Houston, 1984; 1985.

Weinberg, Jerry, Associate Professor and Chair, Department of Computer Science-SIUE, Ph.D., Vanderbilt University, 1996; 1996.

White, William, Professor, Ph.D., Ohio State University, 1989; 1996.

Wu, Trong, Professor, Ph.D., University of Louisiana at Lafayette, 1982; 1986.

Yan, X. Terry, Professor, Ph.D., University of California, 1993; 1993.

Yu, Xudong, Assistant/Associate Professor, Ph.D., Vanderbilt University, 1992; 1999.

Zhou, Jianpeng, Assistant Professor, Ph.D., University of British Columbia, 2003; 2002.

The College of Engineering offers graduate programs leading to the Master of Science degree in civil engineering, electrical engineering, mechanical engineering, mining engineering, and manufacturing systems and a Doctor of Philosophy degree in engineering science and electrical and computer engineering. To support these graduate programs, the college has well equipped laboratories and computer facilities that are housed in a modern engineering complex. Additional research opportunities and funding are provided through the Center for Advanced Friction Studies, Coal Research Center, the Materials Technology Center, and the Office of Research Development and Administration.

Doctor of Philosophy in Engineering Science

The Doctor of Philosophy degree in engineering science is available for four concentrations in four engineering departments. The areas of concentration are as follows:

Areas of Concentration

Civil and Environmental Engineering. Course offerings and research activities include water and wastewater treatments, hazardous and industrial waste treatment, geotechnical and geoenvironmental engineering, hydrologic and hydraulic design principles, sediment transport, water resources systems optimization, steel, concrete and masonry design, structural analysis, seismic design and analysis, engineering materials, and composites design.

Electrical and Computer Engineering. Courses offerings and research activities include antennas, circuits and systems theory, electromagnetics, robust and adaptive control, robotics, embedded control, MEMS, plasma processing, energy conversion, power systems, power electronics, pattern recognition, image processing, biomedical engineering, neutral networks, optical computing, stochastic modeling, wireless communications, detection and estima-
tion theory, communication networks, mobile ad hoc networks, sensor networks, digital systems, programmable ASICs design, bioengineering, computer architecture, CMOS VLSI, fault tolerance, mixed signal testing and design, low power system design, hardware/software co-design, synthesis and verification of digital systems, physical design automation, and VLSI testing.

Mechanical Engineering and Energy Processes. Course offerings and research activities include mechanics, mechanical systems, fluid/thermal systems, material and chemical systems, air pollution control, mass and heat transfer, coal conversion, electrochemical processes, catalysis, thermal science, thermal systems design, combustion, internal combustion engines, chemical and biochemical processes, dynamics and vibrations, mechanical systems control, computational modeling and simulations, composite materials and ceramics, tribology, and micro- and nano-technology.

Mining and Mineral Resources Engineering. Course offerings and research activities in this area of concentration include rock mechanics and ground control, geological engineering, mineral and coal processing, surface and underground mining systems performance optimization, innovative mining systems, surface mine reclamation, in situ mining, mine environment and ventilation, coal bed methane reservoir engineering, carbon dioxide sequestration, and coal combustion byproduct utilization and management.

Admission and Retention

Regular Admission. Admission to the doctoral program requires a master's degree in engineering or its equivalent. Applicants for the doctoral degree must meet Graduate School admission requirements and be approved by the college graduate studies committee. This program requires a $50.00 application fee that must be submitted with the application for Admission to Graduate Study in Engineering Science. Applicants submitting a paper application must pay by personal check, cashier’s check, or money order made out to SIU, and payable to a U.S. Bank. In addition to Graduate School and other college requirements, the committee ordinarily requires a grade point average of 3.25 (4 point scale) in graduate level work. Applicants are required to submit GRE scores in support of their application for admission. Except for persons from English-speaking countries, international students are required to have a minimum TOEFL score of 550 (paper score) or 213 (computer score) or an IELTS score of 6.0 or higher for admission.

Upon admission to the doctoral program, an interim graduate adviser will be assigned for each student by the college associate dean. This adviser will be responsible with the student for planning the student’s course work. The college graduate studies committee will be kept informed of the student’s program of study.

Retention is governed by the rules of the Graduate School. Students should avoid the accumulation of incomplete grades. No student with more than two incomplete grades can be awarded a graduate assistant appointment, and a student holding a graduate assistant appointment is subject to having the appointment terminated upon acquiring two or more incomplete grades.

Accelerated Entry. After at least two semesters in residence in an engineering M.S. program and after completing 18 hours of approved coursework, a student may petition for accelerated entry into the Ph.D. program. Such entry is permitted only in special circumstances to superior students who have exhibited evidence that he/she is prepared to begin the research activities of doctoral-level study. In addition, the student must have an undergraduate grade point average of 3.5 or higher, have GRE scores that are at or above the 45th percentile for the verbal component, 80th percentile of the quantitative component and 80th percentile for the analytical component or a combined total percentile score of 225 or higher and have a TOEFL score of at least 600 (paper score) or 250 (computer score), or an IELTS score of at least 6.5. In addition, the student must pass a college-administered qualifying examination.

Computer Science. Based on a memorandum of understanding signed between the College of Engineering and the College of Science, the Department of Computer Science can participate in the Engineering Science Ph.D. Program. The College of Engineering Ph.D. Committee reviews the applications and approves admissions. One of the participating Computer Science faculty serves on the Committee. An M.S. in Computer Science will be considered as a degree equivalent to an M.S. in Engineering for admission purposes. The student’s Ph.D. committee will determine any makeup work that may be required.

Curriculum

A minimum of 26 semester hours of course work, including 2 hours of seminar, and 24 semester hours of dissertation research is required. The course work must be completed in 2 areas: area of concentration and program core. A student must complete a minimum of 15 hours of course work relevant to an area of concentration. The course work in the area of concentration is intended to provide depth in the student’s area of research. The program core consists of 11 hours of course work. A dissertation must be completed in the student’s area of research interest with the approval of the dissertation committee.

Program Core

The program core consists of 11 hours of course work: 6 hours in math, 3 hours in engineering or science and 2 hours of seminar. The math courses to choose from are: all 400 and 500, except MATH 400, 411, 412, 458, 480, 483, 511, 512, 513, and 516. The engineering courses to choose from are: ENGR 530—Engineering Data Acquisi-
tion: Theory and Practice, ENGR 540—Design of Engineering Experiments, ENGR 545—Advanced Numerical Methods in Engineering, ENGR 521—Probability and Stochastic Processes for Engineers. The science course could be any 400 or 500 level course in Computer Science, Physics, Chemistry or Geology, as approved by the student’s advisor. The seminar course, ENGR 580, must be taken in two separate semesters, each time as one-hour course. It is suggested that the seminar classes be taken after the initiation of doctoral research or after candidacy is granted.

Guide for Core and Concentration Courses

- Only two 400-level courses (typically 6 hours) can be counted towards the minimum required 26 semester hours of course work.
- Special Investigation course can be taken under ENGR 590—Special Investigations in Engineering Science, and only 3 hours can be counted towards the minimum required 26 semester hours of course work.
- Students with an M.S. degree in Physics must take at least 9 hours of ENGR courses, one of which can be ENGR 590.
- Students with an M.S. degree in Physics from SIUC can substitute PHYS 500A and 500B Mathematical Physics for six hours of math requirement in program core.
- Transfer credit will normally be given for some of the graduate level courses suitable to the program upon review by the college Ph.D. Committee. Proficiency examinations may be authorized by the committee for areas in which questions of transfer credit arise. No credit will be given for industrial experience. A maximum of six hours of course work can be transferred in all cases due to residency requirement, which states that every student must complete at least 24 semester hours of approved course work at SIUC prior to taking the candidacy examination. Of the 24 hours, only 6 hours can be dissertation (ENGR 600) hours before candidacy.
- A student transferring credits from a master’s program must have earned those credits over and above the required course work to obtain the M.S. degree in his/her institution. Credit cannot be transferred from master degrees obtained from international institutions.

Candidacy

A Ph.D. student must satisfy all Graduate School requirements to become a candidate. Acceptance to Ph.D. candidacy is contingent upon the completion of all courses, excluding the seminar, with A or B grades and successful completion of a written and an oral test in the student’s area of concentration.

The examination in the area of concentration is organized and administered by the student’s academic advisor. The candidacy examination committee consists of at least three faculty chosen by the advisor in consultation with the student. The committee has to be approved by the program director before it conducts the examination. Normally, the examination can be conducted at any time during the year when classes are in session. In the written examination, the student is tested in at least two major topics of the area of concentration with an appropriate number of questions prepared by the members of the student’s candidacy committee. Each student has to score at least 70% in each major topic test in order to successfully complete the written part of the candidacy examination. If a student fails to pass any topic test of the written examination, a second chance is given for the failed topic test. If a student does not successfully complete the written examination after two attempts, he/she will not be accepted to candidacy in the engineering science Ph.D. program. A student is qualified to take the oral examination only after successfully completing the written examination.

The oral examination is conducted within two weeks of the successful completion of the written examination. In the oral examination, the student is tested again in the area of concentration by at least three candidacy committee members. If a student fails to pass the oral examination in the first attempt, a second chance is given. If a student does not successfully complete the oral examination after two attempts, he/she will not be accepted to candidacy in the engineering science Ph.D. program.

After the completion of the concentration examination, copies of the graded tests, along with signoff sheets for both the written and oral examinations are submitted to the director of the Ph.D. program, who is also the Associate Dean of the College.

Dissertation

A dissertation must be written under the direction of an engineering faculty member and approved by a dissertation committee consisting of a minimum of five members, one of whom must be from outside the College of Engineering. For students with computer science background the committee will be made up of at least six members, three cross-appointed Computer Science faculty members and three Engineering faculty members, with a chair from Computer Science and a co-chair from Engineering.

The dissertation adviser must be chosen by the end of the student’s first academic year. The dissertation committee must be formed no later than immediately after successful completion of the candidacy examination. The members of this committee need not be the same as the members of the candidacy examination committee.

A dissertation research proposal must be approved by the dissertation committee. Candidates will be required to present an acceptable dissertation describing original research performed with minimal supervision. Dissertation approval is based on a successful oral defense of the dissertation research and approval of the dissertation. This requires approval of at least 80 percent of the dissertation committee.
Graduation

1. All requirements of the Graduate School must be met.
2. A minimum of 26 hours of doctoral level course work must be completed with a minimum grade point average of 3.25.
3. An acceptable dissertation must be completed within five years after admission to candidacy or the student will be required to repeat the candidacy examinations.

Doctor of Philosophy in Electrical and Computer Engineering

See Electrical Engineering

Master of Science Programs

See Civil Engineering, Electrical Engineering, Manufacturing Systems, Mechanical Engineering, or Mining Engineering

Courses (ENGR)

521-3 Probability and Stochastic Processes for Engineers. Axioms of probability, random variables and vectors, joint distributions, correlation, conditional statistics, sequences of random variables, stochastic convergence, central limit theorem, stochastic processes, stationarity, ergodicity, spectral analysis, and Markov processes.

530-3 Engineering Data-Acquisition: Theory and Practice. Theory of data acquisition and measurement systems. Criteria for selection of data acquisition hardware and software, instruments, sensors and other components for scientific and engineering experimentation. Methods for sampled data acquisition, signal conditioning, interpretation, analysis, and error estimation.

540-3 Design of Engineering Experiments. Planning of experiments for laboratory and field studies, factorial designs, factorial designs at two levels, fractional factorial designs, response surface methods, mixture designs. Prerequisite: Mining Engineering 417, or Mathematics 483, or equivalent, or consent of instructor.

545-3 Advanced Numerical Methods in Engineering. Engineering applications of linear and nonlinear equations, eigenvalue problems, interpolation and approximating functions and sets of data, numerical solutions of ordinary and partial differential equations. Prerequisite: 222 or equivalent, 351 or equivalent, and Mathematics 305 or consent of instructor.

580-1 Seminar. Study and presentation of research topics from students’ own specialty areas within engineering and science. Graded S/U only. Restricted to: enrollment in the Ph.D. in engineering science program or consent of instructor.

590-1 to 3 Special Investigations in Engineering Science. Investigation of individual advanced projects and problems selected by student or instructor. Prerequisite: admission into Ph.D. program in engineering science.

592-1 to 3 Engineering Cooperative Education. Supervised work experience in industry, government or in a professional organization. Work must be directly related to student’s program of study. Student works with on-site supervisor and faculty advisor. Activity report is required from the student and performance report is required from the employer. Enrollment requires Chair’s approval. Hours do not count toward degree requirements. Mandatory Pass/Fail. Prerequisite: graduate standing.

593-3 Special Topics in Engineering. Studies of various special topics in the area of engineering science. Prerequisite: Consent of instructor.

600-1 to 24 (1 to 16 per semester) Doctoral Dissertation. Dissertation research. Hours and credit to be arranged by director of graduate studies. Graded S/U only. Prerequisite: admission to Ph.D. in engineering science program.

601-1 per semester Continuing Enrollment. For those graduate students who have not finished their degree programs and who are in the process of working on their dissertation, thesis, or research paper. The student must have completed a minimum of 24 hours of dissertation research, or the minimum thesis, or research hours before being eligible to register for this course. Concurrent enrollment in any other course is not permitted. Graded S/U or DEF only.