CIVIL ENGINEERING

COLLEGE OF ENGINEERING

Blackburn, James W., Professor, Ph.D., University of Tennessee, Knoxville, 1988; 1995. Biokinetics, biotechnology, chemical and bioprocesses reduction and control of organic waste / by-products; pollution prevention through tuning complex chemical processes and bioprocesses treatment of waste and wastewater, scale-up and application of bioremediation processes, reduction or control of organic air emissions.

Bravo, Rolando, Associate Professor, Ph.D., University of Houston, 1990; 1991. Surface and subsurface hydrology, hydraulics and fluid mechanics.

Chevalier, Lizette R., Professor, Ph.D., Michigan State University, 1994; 1995. Environmental restoration of groundwater aquifers, experimental investigation of immiscible flow, and numerical modeling of subsurface transport.

Cook, Échol E., Professor, Emeritus, Ph.D., Oklahoma State University, 1970; 1971.

Craddock, James N., Associate Professor, Emeritus Ph.D., University of Illinois, 1979; 1980.

Davis, Philip K., Professor, Emeritus, Ph.D., University of Michigan, 1963; 1964.

DeVantier, Bruce A., Associate Professor, Ph.D., University of California-Davis, 1983; 1983. Water quality modeling, sediment transport, turbulence modeling, finite element methods.

Evers, James L., Associate Professor, Emeritus, Ph.D., University of Alabama, 1969; 1969.

Hsiao, J. Kent, Associate Professor, Ph.D., University of Utah—Salt Lake City, 2000; 2001. Structural earthquake engineering, structural reliability, structural design of buildings and bridges using steel, reinforced or prestressed concrete, masonry, and wood.

Kassimali, Aslam, Professor and Distinguished Teacher, Ph.D., University of Missouri, 1976; 1980. Structural engineering, nonlinear structural analysis, structural dynamics and stability.

Kumar, Sanjeev, Professor, Distinguished Teacher and Chair, Ph.D., University of Missouri-Rolla, 1996; 1998. Dynamic soil-structure interaction, piles under lateral loads, settlement prediction of landfills, hydraulic conductivity of clay barriers, seismic analysis and design of landfills, ground motion amplification in soils, liquefaction of silts and sands and machine foundations.

Liang, Yanna, Assistant Professor, Ph.D., Utah State University, 2006; 2007.

Ma, Samuel, Assistant Professor, Ph.D. Missouri University of Science and Technology, 2004, 2007.

Nicklow, John W., Professor and Associate Dean of the College of Engineering, Ph.D., Arizona State University, 1998; 1998. Water resources and hydraulic engineering, application of operations research to water resources systems, sediment transport, applied hydrology.

Nowacki, C. Raymond, Associate Professor, Emeritus, Ph.D., University of Illinois, 1965; 1963.

Puri, Vijay K., Professor, Ph.D., University of Missouri-Rolla, 1984; 1986. Geotechnical engineering, soil dynamics, machine foundations, liquefaction of soils.

Ray, Bill T., Associate Professor, Emeritus, Ph.D., University of Missouri-Rolla, 1984; 1985.

Rubayi, Najim, Professor, Emeritus, Ph.D., University of Wisconsin, 1966; 1966.

Sam, Sedat, Professor, Emeritus, Ph.D., University of Iowa, 1966; 1966.

Tezcan, Jale, Assistant Professor, Ph.D., Rice University, 2005; 2005. Non-linear structural behavior, neural networks In system Identification and structural control, rehabilitation, and retrofitting of structures damaged by earthquakes.

Wilkerson, Gregory, Assistant Professor, Ph.D. Colorado State University, 1999; 2008.

Yen, Max Shing-Chung, Professor and Director, Materials Technology Center, Ph.D., Virginia Polytechnic Institute, 1984; 1984. Composite materials, experimental mechanics, solid mechanics, and structural dynamics

Master of Science Degree in Civil Engineering

Graduate work leading to the Master of Science degree in civil engineering is offered by the College of Engineering. The program is designed to provide advanced study in the areas of environmental engineering, geotechnical engineering, hydraulic and water resources engineering, and structural engineering.

Admission

Students seeking admission to the graduate program in civil engineering must meet the admission standards set by the Graduate School and have a bachelor's degree in engineering or its equivalent. A student whose undergraduate training is deficient may be required to take coursework without graduate credit.

This program requires a nonrefundable $50.00 application fee that must be submitted with the application for Admissions to Graduate Study in Civil Engineering. Applicants may pay this fee by credit card if applying electronically. Applicants submitting a paper application must pay by personal check, cashier's check, or money order made out to SIU, and payable to a U.S. Bank.
Requirements

A graduate student in civil engineering is required to develop a program of study with a graduate adviser and establish a graduate committee of at least three members at the earliest possible date. Each student majoring in civil engineering may, with the approval of the graduate committee, also take courses in other branches of engineering or in areas of science and business, such as physics, geology, chemistry, mathematics, life science, administrative sciences, or computer science.

For a student who wishes to complete the requirements of the master's degree with a thesis, a minimum of thirty semester hours of acceptable graduate credit is required. Of this total, eighteen semester hours must be earned in the Civil and Environmental Engineering Department. Each candidate is also required to pass a comprehensive examination covering all of the student's graduate work including thesis.

If a student prefers the non-thesis option, a minimum of thirty-six semester hours of acceptable graduate credit is required. The student is expected to take at least twenty-one semester hours within the Civil and Environmental Engineering Department including no more than three semester hours of the appropriate 592 course to be devoted to the preparation of a research paper. In addition, each candidate is required to pass a written comprehensive examination.

Each student will select a minimum of three engineering graduate faculty members to serve as a graduate committee, subject to the approval of the chair of the Civil and Environmental Engineering Department. The committee will:

1. approve the student’s program of study;
2. approve the student’s research paper topic;
3. approve the completed research paper; and
4. administer and approve the written comprehensive examination.

Teaching or research assistantships and fellowships are available for qualified applicants. Additional information about the program, courses, assistantships, and fellowships may be obtained from the College of Engineering or the Department of Civil and Environmental Engineering.

Courses (CE)

413-3 Collection Systems Design. Design of wastewater and storm water collection systems including installation of buried pipes. Determination of design loads and flows, system layout and pipe size. Prerequisite: 310 and 370a.

418-3 Water and Wastewater Treatment. A study of the theory and design of water and wastewater treatment systems, including physical, chemical, and biological processes. Topics include sedimentation, biological treatment, hardness removal, filtration, chlorination and residuals management. Prerequisite: 310, 370 and Engineering 351.

419-3 Advanced Water and Wastewater Treatment. Advanced concepts in the analysis and design of water and wastewater treatment plants. Topics include advanced physical, chemical and biological processes. Emphasis is on the treatment and disposal of sludges, design of facilities, advanced treatment principles, and toxics removal. Prerequisite: 418.

421-3 Foundation Design. Application of soil mechanics to the design of foundations of structures; subsurface exploration; bearing capacity and settlement analysis of shallow foundations; lateral earth pressures and design of retaining walls; capacity and settlement of pile foundations for vertical axial loads. Prerequisite:CE 320.

422-3 Environmental Geotechnology. Geotechnical aspects of land disposal of solid waste and remediation, solute transport in saturated soils, waste characterization and soil waste interaction, engineering properties of municipal wastes, construction quality control of liners, slope stability and settlement considerations, use of geosynthetics and geotextiles, cap design, gas generation, migration and management. Prerequisite: 310 and 320.

431-3 Pavement Design. Design of highway and airport systems: subgrades, subbases, and bases; soil stabilization; stresses in pavements; design of flexible and rigid pavements; cost analysis and pavement selection; and pavement evaluation and rehabilitation. Prerequisite: 320 and 330.

441-3 Matrix Methods of Structural Analysis. Flexibility method and stiffness method applied to framed structures. Introduction to finite elements. Prerequisite: 340.
442-3 Structural Steel Design. An introduction to structural steel design with emphasis on buildings. Design of structural members and typical welded and bolted connections in accordance with the specifications of the Steel Construction Manual of Steel Construction (AISC). Design project and report required. Prerequisite: 340.

444-3 Reinforced Concrete Design. Behavior and strength design of reinforced concrete beams, slabs, compression members and footings. Prerequisite: 340.

447-3 Seismic Design of Structures. Basic seismology, earthquake characteristics and effects of earthquakes on structures, vibration and diaphragm theories, seismic provisions of the International Building Code, general structural design and seismic resistant concrete and steel structures. Prerequisite: 442 or 444, concurrent enrollment or consent of instructor.

448-3 Structural Design of Highway Bridges. Structural design of highway bridges in accordance with the specifications of the American Association of State Highway and Transportation Officials (AASHTO); superstructure includes concrete decks, steel grinders, prestressed and post-tensioned concrete grinders; substructure includes abutments, wingwalls, piers, and footings. Prerequisite: 442 or 444, concurrent enrollment or consent of instructor.

471-3 Groundwater Hydrology. Analysis of groundwater flow and the transport of pollution by subsurface flow; applications to the design of production wells and remediation of polluted areas; finite difference methods for subsurface analyses. Prerequisite: 370 or consent of instructor.

472-3 Open Channel Hydraulics. Open channel flow, energy and momentum, design of channels, gradually varied flow computations, practical problems, spatially varied flow, rapidly varied flow, unsteady flow, flood routing, method of characteristics. Prerequisite: 474 or consent of instructor.

473-3 Hydrologic Analysis and Design. Hydrological cycle, stream-flow analysis, hydrographs generations, frequency analysis, flood routing, watershed analysis, urban hydrology, flood plain analysis. Application of hydrology to the design of small dams, spillways, drainage systems. Prerequisite: 370.

500-1 to 4 Seminar. Collective and/or individual study of selected issues and problems relating to various areas of civil engineering. Prerequisite: graduate standing.

512-3 Environmental Engineering Chemistry. Fundamentals as well as frontiers in aquatic chemistry, environmental organic chemistry, and environmental biochemistry. Topics include thermodynamics and kinetics of redox reactions, linear free energy relations, abiatic organic compound transformations, stoichiometry, energetics and kinetics of microbial reactions, biochemical basis of the transformation of key organic and inorganic pollutants in the environment. Prerequisite: CE 418 or consent of instructor.

516-3 Water Quality Modeling. Water quality factors and control methods. Technical, economic, social and legal aspects concerned with implementation of various engineered systems for water quality management. Case studies. Prerequisite: 418.

518-3 Advanced Biological Treatment Processes. The biochemical and microbial aspects of converting substrate to bacterial cell mass or products and its use in various phases of industry (both fermentation and wastewater treatment). Design of activated sludge and trickling filter plants from lab data obtained on explicit wastes from both industry and municipalities. Prerequisite: 418.

521-3 Soil Improvement. Methods of soil stabilization, compaction, dynamic compaction, chemical treatment, compaction piling, stone columns, dewatering, soil reinforcement with stirrups, geomembranes and geogrids, ground freezing, stabilization of industrial wastes. Prerequisite: 320, 421.

522-3 Advanced Foundation Engineering. Case histories of foundation failure, bearing capacity theories, shallow foundations, deep foundations, piles under vertical and horizontal loads, pier foundations, foundations for difficult soil conditions, soil improvement. Prerequisite: 421.

523-3 Soil Dynamics. Problems in dynamic loading of soils, dynamic soil properties, liquefaction, dynamic earth pressure, foundations for earthquake and other dynamic loads. Prerequisite: 320 and 421.
524-3 **Advanced Soil Testing.** Review of basic laboratory tests on soils, hands-on training for performing advanced laboratory tests on soils such as: triaxial compression, flexible wall permeability, one-dimensional consolidation, and California bearing ratio, understanding ASTM standards, sample preparation, data reduction and interpretation, and development of detailed laboratory test reports. Prerequisites: CE 421, or consent of instructor.

525-3 **Foundations for Dynamic Loads.** Dynamic loads due to natural and man-made phenomena, damage to humans and the environment, property loss, analytical models for response analysis of foundation-soil systems for steady state, seismic and impact loads, design criteria, determination of soil properties, stiffness and damping of foundation-soil systems, design of shallow and deep foundations for various types of dynamic loads, computer applications, case histories of damage. Prerequisites: CE 421 and CE 445 or consent of instructor.

530-3 **Advances in Materials and Testing.** An introduction to advances in concrete technology; High strength concrete; Light-weight concrete; Cement and polymer composites; and Non-destructive testing. Fundamental concepts, manufacture, performance, testing, design methodology and applications.

542-3 **Nonlinear Structural Analysis.** Analysis of the nonlinear response of framed structures subjected to static and dynamic loads. Structural idealizations. Response calculation by incremental and iterative techniques. Instability phenomena of snap-through and bifurcation. Post-buckling behavior. Approximate formulations. Detection of instability under dynamic loads. Prerequisite: 441 or 551 or consent of instructor.

545-3 **Advanced Steel Design.** Economical use of high strength steel; behavior and design bolted and welded building connections, plate girders and composite steel-concrete beams; brittle fracture and fatigue; and low-rise and industrial-type buildings. Prerequisite: 444.

551-3 **Finite Element Analysis.** (Same as Mechanical Engineering 565). Finite element analysis as a stress analysis or structural analysis tool. Derivation of element stiffness matrices by various means. Application to trusses, plane stress/strain and 3-D problems. Dynamic and material nonlinearity problems. Prerequisite: Civil Engineering 350 and Mathematics 305.

552-3 **Theory of Elasticity.** Stress and strain equations of elasticity; equilibrium equations; compatibility equations; stress functions; applications of elasticity in solving engineering problems in two and three dimensions. Prerequisite: 350 and Mathematics 305.

553-3 **Theory of Plasticity.** (Same as Mechanical Engineering 513) Criteria for onset of yielding, isotropic and kinematic strain hardening; flow rules for plastic strains; elastic plastic bending and torsion, slip line field theory; plane stress problems; limit analysis. Prerequisite: 350 and Mathematics 305 or consent of instructor.

554-3 **Experimental Mechanics.** An introduction of various experimental techniques that are commonly used to determine properties such as deformation, straining, surface contour, etc. The topics to be covered include the principles of strain gage technology, theory of photoelasticity, piezoelectric accelerometer, laser based interferometry, image processing and analysis, and reverse mechanics. The specific areas of practical application for each type of experimentation will be discussed. Prerequisite: 350.

557-3 **Advanced Mechanics of Materials.** (Same as Mechanical Engineering 566). Advanced topics in mechanics of materials including: elasticity equations; torsion of non-circular sections; generalized bending including curved beams and elastic foundations; shear centers; failure criteria including yielding, fracture and fatigue; axisymmetric problems including both thick and thin walled bodies; contact stresses; and stress concentration. Prerequisite: 350 and Engineering 222.

570-3 **Sedimentation Engineering.** Introduction to the transport of granular sediment by moving fluids; analysis of regional degradation, aggradation and local scour in alluvial channels; investigation of sediment sources, yield and control. Prerequisite: 474 or consent of instructor.

571-3 **Water Resources Systems Engineering and Management.** Philosophy of water resources planning; economic, social and engineering interactions related to water quantity; quantitative optimal planning methodologies for the design and operation of hydrosystems; guest lecturers; projects/case studies. Prerequisite: 474 or consent of instructor.

572-3 **Advanced Hydraulic Design.** Design and analysis of stormwater control and conveyance systems, dams, spillways, outlet works, stilling basins, culverts and other complex hydraulic systems. Prerequisite: 474 or consent of instructor.

573-3 **Modeling of Hydrosystems.** Hydraulic and hydrologic modeling; theory and application of common surface and subsurface flow models such as HEC–RAS, HEC–6, FLDWAIV, DAMBRK, MODFLOW and MODPATH. Prerequisite: 474 or consent of instructor.
592-1 to 5 Special Investigations in Civil Engineering. Advanced Civil Engineering Topics and/or problems in (a) Structural Engineering, (b) Hydraulic Engineering, (c) Environmental Engineering, (d) Geotechnical Engineering, (e) Fluid Flow Analysis, (f) Computational Mechanics, (g) Composite Materials, and (h) Stress Analysis. Prerequisite: graduate standing and consent of instructor.

599-1 to 6 Thesis.

601-1 per semester Continuing Enrollment. For those graduate students who have not finished their degree programs and who are in the process of working on their dissertation, thesis, or research paper. The student must have completed a minimum of 24 hours of dissertation research, or the minimum thesis, or research hours before being eligible to register for this course. Concurrent enrollment in any other course is not permitted. Graded S/U or DEF only.