Civil and Environmental Engineering

civil.engr.siu.edu
cedep@engr.siu.edu

COLLEGE OF ENGINEERING

Graduate Faculty:

Bravo, Rolando, Associate Professor, Ph.D., University of Houston, 1990; 1991. Surface and subsurface hydrology, hydraulics and fluid mechanics.

Chevalier, Lizette R., Professor and Associate Dean for Undergraduate Education and Outreach, Ph.D., Michigan State University, 1994; 1995. Environmental restoration of groundwater aquifers, experimental investigation of immiscible flow, and numerical modeling of subsurface transport.

Cook, Echol E., Professor, Emeritus, Ph.D., Oklahoma State University, 1970; 1971.

DeVantier, Bruce A., Associate Professor, Ph.D., University of California-Davis, 1983; 1983. Water quality modeling, sediment transport, turbulence modeling, finite element methods.

Evers, James L., Associate Professor, Emeritus, Ph.D., University of Alabama, 1969; 1969.

Hsiao, J. Kent, Professor, Ph.D., University of Utah—Salt Lake City, 2000; 2001. Structural earthquake engineering, structural reliability, structural design of buildings and bridges using steel, reinforced or prestressed concrete, masonry, and wood.

Kassimali, Aslam, Professor and Distinguished Teacher, Ph.D., University of Missouri, 1976; 1980. Structural engineering, nonlinear structural analysis, structural dynamics and stability.

Kolay, Prabir, Associate Professor, Ph. D., Indian Institute of Technology; IIT Bombay, 2001; 2010. Geotechnical Engineering, Soil Stabilization, utilization of recycled concrete aggregate (RCA) and coal ash, unsaturated soil, thermal properties of soil, and numerical modeling.

Kumar, Sanjeev, Professor, Distinguished Teacher and Chair, Ph.D., University of Missouri-Rolla, 1996; 1998. Dynamic soil-structure interaction, piles under lateral loads, settlement prediction of fill, hydraulic conductivity of clay barriers, seismic analysis and design of fill, ground motion amplification in soils, liquefaction of silts and sands and machine foundations.

Liang, Yanna, Professor, Ph.D., Utah State University, 2006; 2007. Bioremediation of organic pollutants in subsurface and groundwater, bioenergy production from alternative sources, and biomaterial production from biological processes.

Liu, Jia, Assistant Professor, Ph.D., University of Houston, 2014; 2015. Environmental Engineering, renewable energy production, microbial fuel cell, water/wastewater treatment and groundwater/soil remediation, material development for energy safety and environmental pollution detection.

Puri, Vijay K., Professor, Ph.D., University of Missouri-Rolla, 1984; 1986. Geotechnical engineering, soil dynamics, machine foundations, liquefaction of soils.

Ray, Bill T., Associate Professor, Emeritus, Ph.D., University of Missouri-Rolla, 1984; 1985.

Rubayi, Najim, Professor, Emeritus, Ph.D., University of Wisconsin, 1966; 1966.

Sami, Sedat, Professor, Emeritus, Ph.D., University of Iowa, 1966; 1966.

Tezcan, Jale, Associate Professor, Ph.D., Rice University, 2005; 2005. Non-linear structural behavior, neural networks in system Identification and structural control, rehabilitation, and retrofitting of structures damaged by earthquakes.

Yen, Max Shing-Chung, Professor, Emeritus, Ph.D., Virginia Polytechnic Institute, 1984; 1984.

Master of Science Degree in Civil Engineering

Graduate work leading to the Master of Science degree in civil engineering is offered by the Department of Civil and Environmental Engineering. The program provides advanced study in the areas of structural engineering, environmental engineering, geotechnical engineering, and hydraulic and water resources engineering.

Admission

The Department of Civil and Environmental Engineering requires that applicants to the master’s program hold a bachelor’s degree in civil or environmental engineering (or equivalent), or have completed all undergraduate degree requirements prior to registration, with minimum grade point average (GPA) of 3.0 (A = 4.0) for the last 60 hours of undergraduate work. Students having a GPA between 2.7 and 3.0 will be considered on a case-by-case basis. A student whose undergraduate training is deficient may be required to take additional coursework without graduate credit. All applicants are required to submit GRE scores in support of their applications for admission (minimum scores: 146 Verbal, 147 Quantitative, 3.5 Analytical Writing). The GRE scores must be less than five years old at the time of registration. Minimum requirements for GRE verbal and analytical writing may be waived if the student’s TOEFL score is greater than 570 (test center), 230 (computer based) or 82 (internet based), or IELTS score of 7.0 or higher, and he/she possesses good communication skills.

Students apply on-line at gradschool.siu.edu/applygrad. A nonrefundable $65 application fee is required and must be paid by credit card. Applications cannot be processed until the fee is paid.

Requirements

A graduate student in the Department of Civil and Environmental Engineering is required to develop a program of study with a graduate adviser and establish a graduate committee of at least three members before the end of his/her first semester in the graduate program. Each student
majors in civil engineering may, with the approval of the graduate committee, also take graduate level courses in other branches of engineering or in areas of science and business, such as physics, geology, chemistry, mathematics, life science, administrative sciences, or computer science.

A minimum of 30 semester hours of acceptable graduate credit is required, including a minimum of three semester hours of CE 599, Thesis. Of this total, eighteen semester hours must be earned in the Department of Civil and Environmental Engineering. Furthermore, at least 15 semester hours must be 500-level and completed at Southern Illinois University Carbondale. Each candidate is also required to pass a comprehensive oral examination covering all of the student’s graduate work, including a thesis.

Each student will select a minimum of three engineering graduate faculty members to serve as a graduate committee, subject to the approval of the Chair of the Civil and Environmental Engineering Department. The committee will:

1. approve the student’s program of study;
2. approve the student’s thesis topic;
3. approve the completed thesis;
4. administer and approve the comprehensive oral examination.

Teaching or research assistantships and fellowships are available for qualified applicants. Additional information about the program, courses, assistantships, and fellowships may be obtained from the College of Engineering or the Department of Civil and Environmental Engineering.

Master of Engineering Degree in Civil Engineering

The Master of Engineering degree (ME) in Civil Engineering is a non-thesis, course only, professional degree designed to provide advanced technical knowledge for professional practice. The program provides advanced study in the areas of structural engineering, environmental engineering, geotechnical engineering, and hydraulic and water resources engineering.

Admission

The Department of Civil and Environmental Engineering requires that applicants to the master’s program hold a bachelor’s degree in civil or environmental engineering (or equivalent), or have completed all undergraduate degree requirements prior to registration, with minimum grade point average (GPA) of 3.0 (A = 4.0) for the last 60 hours of undergraduate work. Students having a GPA between 2.7 and 3.0 will be considered on a case-by-case basis. The GRE is not required for students applying to the ME degree program.

Students apply on-line at gradschool.siu.edu/. A nonrefundable $65 application fee is required and must be paid by credit card. Applications cannot be processed until the fee is paid.

Requirements

For graduation, the ME student is required to complete 30 semester hours of graduate level courses. Of this, 18 semester hours must be earned in the Civil Engineering department. Furthermore, at least 15 semester hours must be 500-level and completed at Southern Illinois University Carbondale. Students are required to take CE 593, Civil Engineering Project. However, this requirement is waived if a student takes an additional 500-level course, i.e., a total of 18 semester hours of 500-level courses. Students may, with the approval of the Department Chair, also take graduate level courses in other branches of engineering or in areas of science and business, such as physics, geology, chemistry, mathematics, life science, administrative sciences, or computer science.

The ME program permits students to complete an advanced degree in three semesters (12 credit hours Fall, 12 credit hours Spring, six credit hours Summer). This is a non-research degree; teaching or research assistantships are not available for students pursuing this degree, nor would this be a suitable track to pursue a Ph.D.

Courses (CE)

CE 410-3 Hazardous Waste Engineering. (Same as CE 510) Analysis of hazardous waste generation, storage, shipping, treatment, and disposal. Source reduction methods. Government regulations. Remedial action. Prerequisite: CE 310.

CE 412-3 Contaminant Fate, Transport and Remediation in Groundwater. Mathematics of flow and mass transport in the saturated and vadose zones; retardation and attenuation of dissolved solutes; flow of nonaqueous phase liquids; review of groundwater remediation technologies; review of flow and transport models. Prerequisite: CE 310 and 320, or consent of instructor for non CE majors.

CE 413-3 Collection Systems Design. Design of waste water and storm water collection systems including installation of buried pipes. Determination of design loads and flows, system layout and pipe size. Prerequisite: CE 310 and ENGR 370A.

CE 418-3 Water and Wastewater Treatment. A study of the theory and design of water and wastewater treatment systems, including physical, chemical, and biological processes. Topics include sedimentation, biological treatment, hardness removal, filtration, chlorination and residuals management. Prerequisite: CE 310, ENGR 370A and completion of concurrent enrollment in ENGR 351.

CE 419-3 Advanced Water and Wastewater Treatment. Advanced concepts in the analysis and design of water and wastewater treatment plants. Topics include advanced physical, chemical, and biological processes. Emphasis is on the treatment and disposal of sludges, design of facilities, advanced treatment principles, and toxics removal. Prerequisite: CE 418.

CE 421-3 Foundation Design. Application of soil mechanics to the design of the foundations of structures; subsurface exploration; bearing capacity and settlement analysis of shallow foundations; lateral earth pressures and design of retaining walls; capacity and settlement of pile foundations for vertical axial loads. Prerequisite: CE 320.

CE 422-3 Environmental Geotechnology. Geotechnical aspects of land disposal of solid waste and remediation, solute transport in saturated soils, waste characterization and soil-waste interaction, engineering properties of municipal wastes, construction quality control of liners, slope stability and settlement considerations, use of geosynthetics and geotextiles, cap design, gas generation, migration and management. Prerequisite: CE 310, 320.

CE 423-3 Geotechnical Engineering in Professional Practice. Application of principles of geotechnical engineering in a real-world setting; planning, managing, and executing geotechnical
structures. Prerequisite: CE 442 or CE 444, concurrent structural design and seismic resistant concrete and steel provisions of the International Building Code, general structures, vibration and diaphragm theories, seismic earthquake characteristics and effects of earthquakes on Basic seismology, CE 447-3 Seismic Design of Structures.

CE 446-3 Structural Steel Design. An introduction to structural steel design with an emphasis on buildings. Design of structural members and typical welded and bolted connections in accordance with the specifications of the Steel Construction Manual of the American Institute of Steel Construction (AISC). Design project and report required. Prerequisite: CE 340.

CE 444-3 Reinforced Concrete Design. Behavior and strength design of reinforced concrete beams, slabs, compression members, and footings. Prerequisite: CE 340.

CE 447-3 Seismic Design of Structures. Basic seismology, earthquake characteristics and effects of earthquakes on structures, vibration and diaphragm theories, seismic provisions of the International Building Code, general structural design and seismic resistant concrete and steel structures. Prerequisite: CE 442 or CE 444, concurrent enrollment or consent of instructor.

CE 448-3 Structural Design of Highway Bridges. Structural design of highway bridges in accordance with the specifications of the American Association of State Highway and Transportation Officials (AASHTO); superstructure includes concrete decks, steel girders, prestressed and post-tensioned concrete girders; substructure includes abutments, wingwalls, piers, and footings. Prerequisite: CE 442 or 444 or concurrent enrollment, or consent of instructor.

CE 471-3 Groundwater Hydrology. Analysis of groundwater flow and the transport of pollution by subsurface flow; applications to the design of production wells and remediation of polluted areas; finite difference methods for subsurface analyses. Prerequisite: ENGR 370A or consent of instructor.

CE 472-3 Open Channel Hydraulics. Open channel flow, energy and momentum, design of channels, gradually varied flow computations, practical problems, spatially varied flow, rapidly varied flow, unsteady flow, flood routing, method of characteristics. Prerequisite: CE 474 or consent of instructor.

CE 473-3 Hydrologic Analysis and Design. Hydrological cycle, stream-flow analysis, hydrograph generation, frequency analysis, flood routing, watershed analysis, urban hydrology, floodplain analysis. Application of hydrology to the design of small dams, spillways, drainage systems. Prerequisite: ENGR 370A.

CE 500-1 to 4 Seminar. Collective and/or individual study of selected issues and problems relating to various areas of civil engineering. Restricted to graduate standing.

CE 510-3 Hazardous Waste Engineering. (Same as CE 410) Analysis of hazardous waste generation, storage, shipping, treatment, and disposal. Source reduction methods. Government regulations. Remedial action. Design projects and presentation required. Prerequisite: Graduate standing in the program or consent of instructor.

CE 511-3 Nanotechnology and Subsurface Remediation. Conventional and emerging nanotechnology-based remediation technologies for subsurface environment; review of current soil and groundwater remediation technologies; sediment remediation, nano-synthesis, characterization and nanotechnology-driven remediation technologies and materials. Special approval needed from the instructor.

CE 512-3 Contaminant Fate, Transport and Remediation in Groundwater. (Same as CE 412) Mathematics of flow and mass transport in the saturated and vadose zones; retardation and attenuation of dissolved solutes; flow of nonaqueous phase liquids; review of groundwater remediation technologies; review of flow and transport models; modeling project. Special approval needed from the instructor.

CE 514-3 Environmental Engineering Chemistry. Fundamentals as well as frontiers in aquatic chemistry, environmental organic chemistry, and environmental biochemistry. Topics include thermodynamics and kinetics of redox reactions, linear free energy relations, abiotic organic compound transformations, stoichiometry, energetics and kinetics of microbial reactions,
biochemical basis of the transformation of key organic and inorganic pollutants in the environment. Prerequisite: CE 418 or consent of instructor.

CE 516-3 Water Quality Modeling. Water quality factors and control methods. Technical, economic, social and legal aspects concerned with implementation of various engineered systems for water quality management. Case studies. Prerequisite: CE 418.

CE 517-3 Industrial Waste Treatment. Theories and methods of treating industrial wastes. Case studies of major industrial waste problems and their solutions. Prerequisite: CE 418.

CE 518-3 Advanced Biological Treatment Processes. The biochemical and microbial aspects of converting substrate to bacterial cell mass or products and its use in various phases of industry (both fermentation and wastewater treatment). Design of activated sludge and trickling filter plants from lab data obtained on explicit wastes from both industry and municipalities. Prerequisite: CE 418.

CE 519-3 Triple E Sustainability - Environment Energy and Economy. Principles, goals, and practical applications of sustainable development; major theories and issues related to sustainability in the areas of environmental resource use, energy production, and process life cycle analysis; identify and design sustainable approaches on common areas of interest to the society, such as buildings, transportation, food, industry processes, and ecology. Special approval needed from the instructor.

CE 520-3 Advanced Soil Mechanics. Advanced theories in soil mechanics, stress distribution in soils, seepage, consolidation, shear strength, settlement analysis and stability of slopes. Prerequisite: CE 320, ENGR 350A,B, CE 421 or concurrent enrollment.

CE 521-3 Soil Improvement. Methods of soil stabilization, compaction, dynamic compaction, chemical treatment, compaction piling, stone columns, dewatering, soil reinforcement with stirrups, geomembranes and geogrids, ground freezing, stabilization of industrial wastes. Prerequisite: CE 320, CE 421.

CE 522-3 Advanced Foundation Engineering. Case histories of foundation failure, bearing capacity theories, shallow foundations, deep foundations, piles under vertical and horizontal loads, pier foundations, foundations for difficult soil conditions, soil improvement. Prerequisite: CE 320.

CE 523-3 Soil Dynamics. Problems in dynamic loading of soils, dynamic soil properties, liquefaction, dynamic earth pressure, foundations for earthquake and other dynamic loads. Prerequisite: CE 320 and CE 421.

CE 524-3 Advanced Soil Testing. Review of basic laboratory tests on soils, hands-on training for performing advanced laboratory tests on soils such as: triaxial compression, flexible wall permeability, one-dimensional consolidation, and California bearing ratio, understanding ASTM standards, sample preparation, data reduction and interpretation, and development of detailed laboratory test reports. Prerequisite: CE 421, or consent of instructor.

CE 525-3 Foundations for Dynamic Loads. Dynamic loads due to natural and man-made phenomena, damage to humans and the environment, property loss, analytical models for response analysis of foundation-soil systems for steady state, seismic and impact loads, design criteria, determination of soil properties, stiffness and damping of foundation-soil systems, design of shallow and deep foundations for various types of dynamic loads, computer applications, case histories of damage. Prerequisite: CE 421 and CE 445 or consent of instructor.

CE 526-3 Seepage and Slope Stability Analysis. (Same as CE 426) Seepage through soils; numerical and physical modeling of two-dimensional flow; basic mechanism of slope stability analysis; analytical methods in analyzing slopes; slope stabilization. Additional project and presentation required for students taking this course instead of CE 426. Prerequisite: CE 320 or consent of instructor.

CE 530-3 Advances in Materials and Testing. An introduction to advances in concrete technology; High strength concrete; Light-weight concrete; Cement and polymer composites; and Non-destructive testing. Fundamental concepts, manufacture, performance, testing, design methodology and applications. Prerequisite: CE 330 or equivalent or consent of instructor.

CE 542-3 Nonlinear Structural Analysis. Analysis of the nonlinear response of framed structures subjected to static and dynamic loads. Structural idealizations. Response calculation by incremental and iterative techniques. Instability phenomena of snap-through and bifurcation. Post-buckling behavior. Approximate formulations. Detection of instability under dynamic loads. Prerequisite: CE 441 or CE 551 or consent of instructor.

CE 545-3 Advanced Steel Design. Economical use of high strength steel; behavior and design bolted and welded building connections, plate girders and composite steel-concrete beams; brittle fracture and fatigue; and low-rise and industrial-type buildings. Prerequisite: CE 442.

CE 551-3 Introduction to Finite Elements in Engineering Applications. (Same as CE 451 and ME 565) An introduction to finite element techniques and computer methods in finite element applications. Theory and structure of algorithms for one-dimensional and multi-dimensional problems. Applications in solid mechanics, structural analysis, groundwater and fluid flow, and heat transfer, projects and presentations. Prerequisite: ENGR 351 or consent of instructor.

CE 552-3 Theory of Elasticity. Stress and strain equations of elasticity; equilibrium equations; compatibility equations; stress functions; applications of elasticity in solving engineering problems in two and three dimensions. Prerequisite: ENGR 350A,B and MATH 305.

CE 553-3 Theory of Plasticity. (Same as ME 513) Criteria for onset of yielding, isotropic and kinematic strain-hardening; flow rules for plastic strains; elastic plastic bending and torsion, slip line field theory; plane stress problems; limit analysis. Prerequisite: ENGR 350A,B and MATH 305 or consent of instructor.
CE 554-3 Experimental Mechanics. An introduction of various experimental techniques that are commonly used to determine properties such as deformation, straining, surface contour, etc. The topics to be covered include the principles of strain gage technology, theory of photoelasticity, piezoelectric accelerometer, laser based interferometry, image processing and analysis, and reverse mechanics. The specific areas of practical application for each type of experimentation will be discussed. Prerequisite: ENGR 350A,B.

CE 557-3 Advanced Mechanics of Materials. (Same as ME 566) Advanced topics in mechanics of materials including: elasticity equations; torsion of non-circular sections; generalized bending including curved beams and elastic foundations; shear centers; failure criteria including yielding, fracture and fatigue; axisymmetric problems including both thick and thin walled bodies; contact stresses; and stress concentration. Prerequisite: ENGR 350A,B.

CE 558-3 Reliability in Engineering Applications. An overview of principles and methods for quantifying the uncertainty in planning, design, testing and operation of engineering systems. Topics include probability theory, random variables, multivariate distributions, regression and correlation analyses, Monte Carlo simulations, and Bayesian approaches. Concepts are illustrated with examples from various areas of engineering, with particular emphasis on civil engineering applications. Prerequisite: ENGR 351 or consent of instructor.

CE 570-3 Sedimentation Engineering. Introduction to the transport of granular sediment by moving fluids; analysis of regional degradation, aggradation and local scour in alluvial channels; investigation of sediment sources, yield and control. Prerequisite: CE 474 or consent of instructor.

CE 571-3 Water Resources Systems Engineering and Management. Philosophy of water resources planning; economic, social and engineering interactions related to water quantity; quantitative optimal planning methodologies for the design and operation of hydrosystems; guest lecturers; projects/case studies. Prerequisite: CE 474 or consent of instructor.

CE 572-3 Advanced Hydraulic Design. Design and analysis of stormwater control and conveyance systems, dams, spillways, outlet works, stilling basins, culverts and other complex hydraulic systems. Prerequisite: CE 474 or consent of instructor.

CE 573-3 Modeling of Hydrosystems. Hydraulic and hydrologic modeling; theory and application of common surface and subsurface flow models such as HEC-RAS, HEC-6, FLDWAV, DAMBRK, MODFLOW and MODPATH. Prerequisite: CE 474 or consent of instructor.

CE 592A-1 to 5 Special Investigations in Civil Engineering. Advanced Civil Engineering Topics and/or problems in Structural Engineering. Restricted to graduate standing. Special approval needed from the instructor.

CE 592B-1 to 5 Special Investigations in Civil Engineering. Advanced Civil Engineering Topics and/or problems in Hydraulic Engineering. Restricted to graduate standing. Special approval needed from the instructor.